
This is terrific. I am a believer in hydrogen technology and to see it actually put into practice is wonderful. Just need oil as a lubricant. I'm guessing domestic oil production would be sufficient enough to cover lubricant needs. Bye bye gasoline.

Moderator: Vraith
"If you can't tell the difference, what difference does it make?"
Wouldn't that be great?aTOMiC wrote:[url]Bye bye gasoline.
Using synthetic biology approaches, Zhang and colleagues Barbara R. Evans and Jonathan R. Mielenz of ORNL and Robert C. Hopkins and Michael W.W. Adams of the University of Georgia are using a combination of 13 enzymes never found together in nature to completely convert polysaccharides (C6H10O5) and water into hydrogen when and where that form of energy is needed. This "synthetic enzymatic pathway"research appears in the May 23 issue of PLoS ONE.
Polysaccharides like starch and cellulose are used by plants for energy storage and building blocks and are very stable until exposed to enzymes. Just add enzymes to a mixture of starch and water and "the enzymes use the energy in the starch to break up water into only carbon dioxide and hydrogen,"Zhang said.
A membrane bleeds off the carbon dioxide and the hydrogen is used by the fuel cell to create electricity. Water, a product of that fuel cell process, will be recycled for the starch-water reactor. Laboratory tests confirm that it all takes place at low temperature -- about 86 degrees F -- and atmospheric pressure.
The vision is for the ingredients to be mixed in the fuel tank of your car, for instance. A car with an approximately 12-gallon tank could hold 27 kilograms (kg) of starch, which is the equivalent of 4 kg of hydrogen. The range would be more than 300 miles, Zhang estimates. One kg of starch will produce the same energy output as 1.12 kg (0.38 gallons) of gasoline.
Over the years, many substances have been proposed as "hydrogen carriers,"such as methanol, ethanol, hydrocarbons, or ammonia -- all of which require special storage and distribution. Also, the thermochemical reforming systems require high temperatures and are complicated and bulky. Starch, on the other hand, can be distributed by grocery stores, Zhang points out.
"So it is environmentally friendly, energy efficient, requires no special infrastructure, and is extremely safe. We have killed three birds with one stone,"he said. "We have hydrogen production with a mild reaction and low cost. We have hydrogen storage and transport in the form of starch or syrups. And no special infrastructure is needed."